1. The numbers of ATM transactions per day were recorded at 15 locations in a city. The

data were: 35,49,225,50,30,65,40,55,52,76,48,325,47,32,60

- a) Find the mean number of transactions
- b) Find the median number of transactions

SOLUTION

Step1 : create ATM_Trans variable view. Change its type as numeric. Step 2: in the data view enter the data as in the question

	ATM_Trans	var
	35.00	
	49.00	
	225.00	
	50.00	
	30.00	
	65.00	
	40.00	
	55.00	
	52.00	
)	76.00	
1	48.00	
2	325.00	
3	47.00	
1	32.00	
5	60.00	
6		
7		
3		
)		

Step3. Click on analyze menu-> Descriptive Statistics->Frequencies-> select the varable ATM_tran from left side and click arrow mark ->click on Statistics button->tick on mean and median ->continue ->ok

Output

Statistics

ATM	I_Trans	
Ν	Valid	15
	Missing	0
Mea	n	79.2667
Med	ian	50.0000

---- -

2. Compute the mean, median, mode for the following frequency distribution

Height(cm	145-	150-	155-	160-	165-	170-	175-	180-
)	150	155	160	165	170	175	180	185
Frequency	4	6	28	58	64	30	5	5

Solution

Step1 : create three variable loheight, upheight and frequency in variable view. Change its type as numeric.

Step 2: in the data view enter the data as in the question Step 3: click Trasnform-> compute variable

Then Target variable as midheight Numeric Expression as (loheight+upheight) / 2 Click ok

eight	t j				
	loheight	upheight	frequency	midheight	Va
	145.00	150.00	4.00	147.50	
	150.00	155.00	6.00	152.50	
	155.00	160.00	28.00	157.50	
	160.00	165.00	58.00	162.50	
	165.00	170.00	64.00	167.50	
	170.00	175.00	30.00	172.50	
	175.00	180.00	5.00	177.50	
	180.00	185.00	5.00	182.50	

Step 4: click on Data->Weight Cases->click on weight cases by->select and click frequency variable then ok

Step 5: click on Analyze->Descriptive Statistics->Frequency->select midheight as variable->click on the button Statistics->tick on mean ,median and mode click ok

Statistics

midheight

Ν	Valid	200
	Missing	0
Mean		165.1750
Media	an	167.5000
Mode		167.50

3. The ages and incomes of the 10 employees in a company are given below. Compute the standard deviation of ages and incomes for these employees.

Age	25	28	34	51	47	39	55	40	37	41
Incom	2350	2600	3000	4200	4000	3550	5000	3700	3575	3800
e	0	0	0	0	0	0	0	0	0	0

Solution:

Step1 : create two age and income in variable view. Change its type as numeric.

Step 2: in the data view enter the data as in the question

age	income	
25.00	23500.00	
28.00	260000.00	
34.00	30000.00	
51.00	42000.00	
47.00	40000.00	
39.00	35500.00	
55.00	50000.00	
40.00	37000.00	
37.00	35750.00	
41.00	380000.00	

Step3: Step 5: click on Analyze->Descriptive Statistics->Frequency->select age and income variable->click on the button Statistics->tick on StandardDeviation

Statistics

		age	income
Ζ	Valid	10	10
	Missing	0	0
Std	. Deviation	9.48742	122942.921

4. A study assessing the effectiveness of iron supplements among 8 school students reveals the following data. Check whether the supplement is effective or not?

Hb level before	Hb level after
10	13
8	13
9	11
10	12
8	10
10	13
11	14
12	16

Solution:

Suppose H0=No significance difference between HB level before and after

Step1 : create variables HB_Before and HB_After in the create variable view. Change its type as numeric.

Step 2: in the data view enter the data as in the question

Step3. Click on analyze menu-> compare means->Paired Sample T test-> click on arrow and change the variables HB_Before and HB_After in the right column as variable1 and variable2 repsectively-> then click OK button

OUTPUT

Paired Samples Statistics						
				Std.	Std. Error	
		Mean	N	Deviation	Mean	
Pair 1	HB_Before	9.75	8	1.389	.491	
	HB_After	12.75	8	1.832	.648	

Paired Sample	es Correlat	tions
	NI	Carrola

	Ν	Correlation	Sig.
Pair 1 HB_Before & HB_After	8	.814	.014

Paired Samples Test

		Paired Differences							
	95% Confidence Interval of Std. Std. Error the Difference								
		Mean	Deviation	Mean	Lower	Upper	t	df	Sig. (2-tailed)
Pair 1	HB_Before - HB_After	-3.000	1.069	.378	-3.894	-2.106	-7.937	7	.000

From the output significant value is .000 . it is less than .05 . so we reject HO. This means there is significant difference between HB level before and after

One-way ANOVA

5. The data in the following table gives the number of hours of relief provided by 5 different brands of headache tablets administered to 25 subjects experiencing fevers of 38oC or more. Perform the analysis of variance and test the hypothesis at the 0.05 level of significance that the mean number of hours of relief provided by the tablets is same for all 5 brands

A	В	С	D	E
5	9	3	2	7
4	7	5	3	6
8	8	2	4	9
6	6	3	1	4
3	9	7	4	7

Solution:

Suppose H0=No significance difference between hours of relief for the tablet of different brands

Step 1: enter the variable time and brand in the variable view. Change its types to numeric. In brand variable change its label and value as given below

Value	label
1.0	Α
2.0	В
3.0	С
4.0	D
5.0	E

Step 2: enter the data variable time and brand in the corresponding column

time	brand	var				
5.00	1.00					
4.00	1.00					
8.00	1.00					
6.00	1.00					
3.00	1.00					
9.00	2.00					
7.00	2.00					
8.00	2.00					
6.00	2.00					
9.00	2.00					
3.00	3.00					
5.00	3.00					
2.00	3.00					
3.00	3.00					
7.00	3.00					
2.00	4.00					
3.00	4.00					
4.00	4.00					
1.00	4.00					
4.00	4.00					
7.00	F 00					

Step 3: click on Analyze tab->Comparemeans->One way Anova->select time in dependent list and brand in factor-> click ok

OUTPUT

ANOVA

time

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	79.440	4	19.860	6.896	.001
Within Groups	57.600	20	2.880		
Total	137.040	24			

Significant value is .001 which is less than .05 so H0 is rejected which mean there is a significant difference between between hours of relief for the tablet of different brands

6. Calculate Pearson's coefficient of correlation between advertisement cost (in

Advt. cost	39	65	63	90	82	75	25	98	36	78
Sales	47	53	58	86	62	68	60	91	51	84

thousands) and sales (in lakhs) as per the data given below:

Solution:

Step 1: enter the variable advtcost and sales in the variable view. Change its types to numeric Step 2: enter the data of advtcost and sales in the corresponding column

Step 3: click on Analyze tab->Correleate->Bivariate->select advtcost and sales and click arrow to become it on right side-> tick on pearson of correlation coefficients->then click on two tailed and click ok

 · · · · · · · · · · · · · · · · · · ·			
advtcost	sales	var	va
39.00	47.00		
65.00	53.00		
63.00	58.00		
90.00	86.00		
82.00	62.00		
75.00	68.00		
25.00	60.00		
98.00	91.00		
36.00	51.00		
78.00	84.00		

OUTPUT

Correlations

Correlations							
		advtcost	sales				
advtcost	Pearson Correlation	1	.778				
	Sig. (2-tailed)		.008				
	Ν	10	10				
sales	Pearson Correlation	.778	1				
	Sig. (2-tailed)	.008					
	Ν	10	10				

**. Correlation is significant at the 0.01 level (2tailed).